
Héctor Pérez
J. Javier Gutiérrez

XIX Jornada Técnica de Ada-Spain
Virtual, 27 de abril de 2022

Aislamiento, acceso al reloj y
comunicaciones en aplicaciones
MaRTE OS sobre Linux

MaRTE OS

• Main features
▫ follows the Minimal Real-Time POSIX.13 subset
▫ single address space shared by kernel and application
▫ support for concurrent Ada and C applications
 implements Ada Real-Time Systems Annex

• Supported arquitectures

Ada Spain: Héctor Pérez

2

x86

• Bare-machine
• XtratuM

ARM

• Raspberry pi
• STM32
• Lego EV3 (WiP)

Linux

• linux
• linux_lib

MaRTE OS: linux_lib architecture

• MaRTE OS behaves as a pthread library for Linux
▫ concurrency is provided at library level (not by using Linux threads)
▫ no admin privileges required to assign priorities to threads

• Applications are executed as a standard Linux user process
• Hardware Abstract Layer (HAL) is based on Linux system calls

Ada Spain: Héctor Pérez

3

Original image from Mario
Aldea in “MaRTE OS:

Overview and Linux Version”

Motivation

• Online teaching during Covid-19 pandemia
▫ easy to install and use for students at home

• Research platform for EDF systems
▫ global-clock EDF
 scheduling deadlines can be referred to the release time

of tasks allocated in a different node
 global clock is required

▫ clock synchronization protocol and network card drivers
implemented in Linux

Ada Spain: Héctor Pérez

4

Problem #1: predictability in Linux

• Issue to address: the design of the Linux kernel favors
throughput over determinism
▫ interferences from other users’ workload
▫ interferences from the Linux kernel

• Proposed approach:
▫ core partitioning for real-time tasks
 isolcpus and cpuset facilities
 tickless or adaptative tick mode
 offload interrupts and workload to non-real-time cores

▫ Linux settings for preemptible kernel
 PREEMPT_RT patch or PREEMPT low-latency kernel

Ada Spain: Héctor Pérez

5

Execution framework

Ada Spain: Héctor Pérez

6

Tests platform

Ada Spain: Héctor Pérez

7

• Hardware: quad-core 1.9 GHz
• Software
▫ kernel v4.4.256-rt214
▫ each experiment is executed with SCHED_FIFO

scheduling and maximum priority
▫ core 2 isolated for real-time applications
 isolcpu=2
 nohz_full=2
 shielding with cset
 other options also enabled

Problem #1: experimental results (1/4)

• Monitoring IRQs with workload (1 hour)
▫ workload added by stress-ng
 3 threads add synthetic worload (~ 25% system load per thread)
 2 threads add I/O operations
 1 thread adds timer interrupts

▫ user load in the isolated core keeps at 0%

Ada Spain: Héctor Pérez

8

IRQ CPU0 CPU1 CPU2 CPU3

I/O miscelaneous 807 333 1 198 0 3 566

Local timer interrupts 50 061 503 664 673 816 56 927 30 294 281

Rescheduling interrupts 173 638 28 420 1 247 011 428 492

Function call interrupts 665 622 9 261 668

TLB shootdowns 271 316 200 454

Problem #1: experimental results (2/4)

• Monitoring IRQs with workload (1 hour)
▫ using the same workload than in the previous test
▫ user load in the isolated core keeps at 0%
▫ core 2 and core 3 disabled at boottime for Linux

Ada Spain: Héctor Pérez

9

IRQ CPU0 CPU1 CPU2 CPU3

I/O miscelaneous 397 212 2 627 0 0

Local timer interrupts 79 986 427 640 569 134 4 274 29 311 597

Rescheduling interrupts 66 832 33 063 1 137 134 173 616

Function call interrupts 588 552 2 210 143

TLB shootdowns 278 330 1 133

Problem #1: experimental results (3/4)

• Event-handling latency in core 2 using cyclictest
▫ schedules timer events and compares the expected

and actual wakeup time

Ada Spain: Héctor Pérez

10

Execution
time

expected wakeup time
actual wakeup time
latency

Problem #1: experimental results (4/4)

• Event-handling latency in core 2 using cyclictest
▫ using the same workload than in the previous test

Ada Spain: Héctor Pérez

11

Problem #2: clock overhead in linux_lib architecture

• Issue to address: overhead when reading the clock
▫ calling clock_gettime is slower in MaRTE OS with linux_lib
 frequent system calls can dominate overall performance

▫ implementation details:
 MaRTE OS with linux_lib: the clock_gettime function finishes in a

Linux system call
 Linux: the clock_gettime function is usually supported as vDSO

(virtual dynamic shared object) to improve its performance
▫ mechanism to export frequent read-only system calls to user space without

a mode switch

• Proposed approach:
▫ update linux_lib to use vDSO
▫ minimize the number of kernel locks/unlocks in MaRTE

Ada Spain: Héctor Pérez

12

Problem #2: experimental results

• Overhead associated with the reading of the system clock

for 1 to 100000000:
t1 = gettime(clock)
t2 = gettime(clock)
overhead = t2 – t1

• Executed 100,000,000 times
▫ timing results are expressed in microseconds

Ada Spain: Héctor Pérez

13

Scenario Max Avg Min Std Dev

Linux RT 12.79 0.07 0.07 0.04

MaRTE OS over Linux 13.00 2.05 2.00 0.21

MaRTE OS over Linux with vDSO 9.80 0.19 0.18 0.06

Problem #3: Networking in linux_lib architecture

• Issue to address: the design of linux_lib does not
favors the use of blocking network calls
▫ when a thread blocks in a network call, the whole

application blocks
 e.g., waiting on a socket for incoming messages

• Proposed approach:
▫ use a new communication layer (acting as a broker)

and asynchronous I/O signals
 user threads are blocked using MaRTE synchronization

mechanisms

Ada Spain: Héctor Pérez

14

Problem #3: Proposed approach

• Sockets are configured to
be non-blocking and
asynchronous

• Linux raises a signal when
new incoming messages are
available for reading

• epoll syscall for monitoring
multiple sockets

Ada Spain: Héctor Pérez

15

Conclusions

• Full isolation cannot be obtained
▫ maximum interferences around tens of microseconds

• Clock overhead has been reduced
▫ vDSO broadly available in current systems

• Networking functionality has been enhanced
▫ non-negligible performance penalty compared to

other architectures

Ada Spain: Héctor Pérez

16

	XIX Jornada Técnica de Ada-Spain�Virtual, 27 de abril de 2022
	MaRTE OS
	MaRTE OS: linux_lib architecture
	Motivation
	Problem #1: predictability in Linux
	Execution framework
	Tests platform
	Problem #1: experimental results (1/4)
	Problem #1: experimental results (2/4)
	Problem #1: experimental results (3/4)
	Problem #1: experimental results (4/4)
	Problem #2: clock overhead in linux_lib architecture
	Problem #2: experimental results
	Problem #3: Networking in linux_lib architecture
	Problem #3: Proposed approach
	Conclusions

