Programming by Contract

José F. Ruiz
Senior Software Engineer

Ada Spain 2013

Copyright © 2013 AdaCore Slide: 1

Ada Evolution

“Ada 83

b"Ada 2012

A_—
__/Ada 2005
* Interfaces
() « Containers
\/Ada 95 » Better Limited
« Object Types
Orientation « Ravenscar
» Better Access
Types
* Protected
Types
e Child

Packages

 Pre/Post/
Invariants

* |terators

* New
expressions

* Process
Affinities

In out parameters for functions

e Ada 83 to 2005 forbids the use of in out for function

« Since Ada 95, it’s possible to workaround that with the
access mode (but requires the explicit use of an access)

 Ada 2012 allows ‘in out’ parameters for functions

function Increment (V : in out Integer) return Integer is
begin

V :=V + 1;

return V;
end F;

Aliasing detection

 Ada 2012 detects “obvious” aliasing problems

function Change (X, Y : in out Integer) return Integer is
begin
X 1= X * 2;
Y :=Y * 4;

return X + Y;

end;

One, Two : Integer := 1;
begin

Two := Change (One, One);

-— warning: writable actual for "X" overlaps with actual for "Y"“

Two := Change (One, Two) + Change (One, Two) ;
warning: result may differ if evaluated after other actual 1in

expression

Pre, Post conditions and Invariants

« The Ada 2012 standard normalizes pre conditions, post
conditions

procedure P (V : in out Integer)
with Pre => V >= 10,
Post => V’01ld /= V;

* New type invariants will ensure properties of an object

type T is private
with Invariant => Check (T);

* Subtype predicates

type Even is range 1 .. 10
with Predicate => Even mod 2 = 0;

Conditional expressions

* [t will be possible to write expressions with a resulit
depending on a condition

procedure P (V :
X : Integer :=
Y : Integer :

begin
null;
end;

Integer) is

(if V = 10 then 15 else 0);

(case V is when 1 ..

10 => 0, when others => 10);

* Given a container, it will be possible to write a simple loop

iterating over the elements

« Custom iterators will be possible

Ada 2005

X : Container.Iterator := First (C);
Y : Element Type;
declare

while X /= Container.No Element loop
-—- work on X

Y := Container.Element (X);
-—- work on Y
X := Next (X);

end loop;

Ada 2012

for X in C loop
-— work on X
Y := Container.Element (X);
-— work on Y

end loop;

for Y of C loop
-—- work on Y
end loop;

Quantifier expressions

Checks that a property is true on all components of a
collection (container, array...)

type A is array (Integer range <>) of Integer;

\Y
Bl
B2

: A := (10, 20, 30);
: Boolean := (for all J in V’Range => V (J) >= 10); -- True
: Boolean := (for some J in V’Range => V (J) >= 20); -- True

Generalized memberships tests

« Memberships operations are now available for all kind of
Boolean expressions

Ada 2005 Ada 2012
if C = ‘a’
or else C = ‘e’
or else C ‘if
or else C ‘of if C in ‘a’ | ‘e’ | Mif
or else C ‘u’ | Yo’ | ‘u’ | ‘y’ then
or else C = 'y’
then

case C 1is
when ‘a’ | ‘e’ |
| \OI | \ul | \

Expression-functions

* Function implementation can be directly given at
specification time if it represents only an “expression”

function Even (V : Integer) return Boolean
is (Vmod 2 = 0);

Containers

« Ada 2005 containers are unsuitable for HIE application
— Rely a lot of the runtime
— Not bounded

« Ada 2012 introduces a new form of container, “bounded”
used for
— HIE product
— Statically memory managed
— Static analysis and proof

Processor affinities

Task can be assigned to specific processors
Enhances control over program behavior

Enables Ravenscar on multi-core

task body T1 1is
pragma CPU (1) ;
begin
[...]
end T1;

task body T2 is
pragma CPU (2);
begin
[...]
end T2;

Ada 2012 safety improvements

Improve readability
— Specification contains formally expressed properties on the code

Improve testability

— Constraints on subprograms & code can lead to dynamic checks
enabled during testing

Allow more static analysis
— The compiler checks the consistency of the properties

— Static analysis tools (CodePeer) uses these properties as part of its
analysis

Allow more formal proof

— Formal proof technologies can prove formally certain properties of
the code (High-Lite project)

SPARK 2014

SPARK 2014 POW

 Testing is expensive and inaccurate

* Proving is more accurate, but proving 100% is even more expensive...

* ... especially the last 20%

« How about proving what’s easy to prove and test the rest?

« SPARK 2014 is a subset of Ada

— Provable subset (Ada without tasking, exceptions and access / aliasing)

— Can act as a coding standard for e.g. DO-178B

— Provable

 Proofs are made against formal contract (pre / post conditions)

« Sometimes it’s not practical to
— Write in SPARK 2014
— Write the contracts
— Prove the code

 Test can replace proof

 Objective : be at least as good as test, at most as expensive as tests

Combining Unit Proof and Unit Test

Verification Results

Unit Proof is done by SPARK toolset,
relying on provers (e.g. Alt-Ergo)

Unit test can be done either using
GNATtest or standard testing
technology

Proof with SPARK 2014

 Absence of Run-Time errors (exceptions)

« Each point of call verifies the preconditions of this subprogram

« Each subprograms verifies the postcondition assuming that the
precondition is true

* Predicates and type invariants are verified on type usage

« Addition of constructions dedicated to proof (loop invariants,
object update, ...)

Example

Programming by Contract

Example: a ring buffer

DATA
Buf Size : comnstant := 100;
type Buf Array is array (0 .. Buf Size - 1) of Float;

—-— The array which stores the buffer

type Ring Buffer is record

Data : Buf Array := (others => 0.0);
First : Integer := 07
Length : Integer := 0;

end record;

—-— The record representing the buffer.

-— First is the first cell containing valid data.
-—- Length 1s the number of stored items.

-— Wrapping around the array borders 1s possible.

-— The field Length 1s between 0 and Buf Size.
—-— The field First is always a valid array index, hence
-— between 0 and Buf Size - 1.

Example: a ring buffer (ll)

API

function Is Empty (R : Ring Buffer) return Boolean;
—— Check whether the buffer is empty

function Is Full (R : Ring Buffer) return Boolean;
—— Check whether the buffer is full

function Head (R : Ring Buffer) return Float;
—— Return the first element of the buffer

procedure Push (R : in out Ring Buffer; Element : Float);
—-— Insert element in the buffer. The buffer should not be full
-— and 1ts length 1s increased by one.

procedure Pop (R : in out Ring Buffer; Element : out Float);
-— Extract the first element of the buffer. The buffer should
-—- not be empty and its length is decreased by one.

Enhance ring buffer: better typing

Buf Size : constant := 100;

type Length Type is new Integer range 0
—-—- The 1nteger type of buffer length

type Index Type is mod Length Type’Last;
-—- The 1nteger type for valid array indices

type Buf Array is array (Index Type)

type Ring Buffer is record
Data : Buf Array 1=
First : Index Type :=
Length : Length Type :=
end record;

(others => 0.0);
0;
0;

Buf_Size;

of Float;

Enhance ring buffer: use Ada 2012 expression functions

function Is Empty (R : Ring Buffer) return Boolean is
(R.Length = 0);
—— Check whether the buffer is empty

function Is Full (R : Ring Buffer) return Boolean is
(R.Length = Buf Size);
—-— Check whether the buffer 1is full

function Head (R : Ring Buffer) return Float is
(R.Data (R.First));
—— Return the first element of the buffer

Enhance ring buffer: contracts

procedure Push (R : in out Ring Buffer; Element : Float) with
Pre => not Is Full (R),

Post => R.Length = R.Length’0Old + 1;
—-— Insert element in the buffer. The buffer should not be full
-— and 1its length is increased by one.

procedure Pop (R : in out Ring Buffer; Element : out Float) with
Pre => not Is Empty (R),
Post => R.Lenggh = R.Length’0Old - 1 and then
R.First = R.First’0Old + 1 and then
Head (R"01ld) = Element;
-— Extract the first element of the buffer. The buffer should
-—- not be empty and its length is decreased by one.

What can we do with

contracts?

Possibilities

e Static verification

— The compiler has limited checks
— Must run quickly -> imprecise analysis
— Can detect “obvious” errors
— Verifier performs longer and better analysis
— Longer execution -> precise analysis
— Scalable analysis -> modular, based on contracts
— Can detect subtle errors

e Run-time checks

— Contracts behave like Assertions

 Formal proofs
— SPARK 2014

Static verification: compiler

function Increase (X : Integer) return Integer with
Post => X < Integer'Last;

$ gcc —c¢ —gnatl2 —-gnata pck.adb
warning: postcondition refers only to pre-state
warning: function postcondition does not mention result

Verifier

» The Verifier checks

— All possible run-time errors

— Division by zero, range checks, ...

— All user properties
— Assertions
— Contracts

— Invariants

» The Verifier works by

— Generating specific logical formulas
— Called Verification Conditions (VCs)

— Using a prover to verify them

« Strong mathematical origins

Static verification: verifier (postcondition)

procedure Push (R : in out Ring Buffer; Element : Float) with
Pre => not Is Full (R),
Post R.Length = R.Length’0ld + 1;

procedure Pop (R
Pre => not Is
Post => R.Length\= R.Length’0Old - 1 and then

R.First =\ R.First’0Old + 1 and then

Head (R’01d) = Element;

in out Ring Buffer; Element : out Float) with
mpty (R),

gnatprove -v —--reRort=detailed -P default.gpr
.Push, 3 checks
info: range check proved
example 2012.adb:10:28: in range check proved

vle 2012.ads:37:21: info: postconditioniggéiég:::>
analyzing precondition rfor Example Z012.Push, 0 checks
analyzing Example 2012.Pop, 2 checks
examplle 2012 .adb:20:28;: info: range check proved
example 2012.ads:43:21: info: postcondition proved
analyzing precondition for Example 2012.Pop, 0 checks

Static verification: verifier (range checks)

procedure Push (R : in out Ring Buffer; Element : Float) 1is
begin
R.Data (R.First + Index Type (R.Length)) := Element;
R.Length := R.Length + 1;

end Push;

procedure Pop (R : in out Ring BufRer; Element : out Float) is

begin
Element := R.Data (R.First);
R.Length := R.Length - 1;
R.First R.First + 1;
end Pop;
example 2012.adb:9:38: info: range check proved
12.adb:10:28: info: range check proved
examp/le ZU0IZzTads+3+2I+—3nfer—poestcondition proved
analyzing precondition for Example 2012.Push, 0 checks

analyzing Example 2012 Pop, 2 checks

<i::§§§§£ls_2012.adb:§0:28: info: range CheCk:EEEEEE:::>

example 2012.ads:43:Z21: 1nfo: postcondition proved
analyzing precondition for Example 2012.Pop, 0 checks

What if a VC is not proved?

« Causes
— Incorrect code
— Incorrect assertion
— Missing assertions about program behavior
— Prover timeouts
— Prover not smart enough

- How to investigate

— Relatively easy
— Pre/post conditions, assertions, and invariants are executable
* You can run and debug them

— Increase prover timeout
— Use alternative SMT prover
— Time consuming
— Manual review
— Time consuming and difficult
— Hand-written proofs

— ... ortesting

SPARK 2014

SPARK 2014 language (l)

« Completely based on Ada 2012
— New specification aspects: contracts, invariants
— New expresions: if expression, case expression, quantified expression (for all, for some)

— New attributes: ‘Result, ‘Old

-— 0l1ld SPARK

procedure Inc (X : in out Integer);
-—# pre X < Integer’Last;

-—# post X = X~ + 1;

—-— New SPARK 2014

procedure Inc (X : in out Integer) with
Pre => X < Integer’Last,
Post => X = X'01ld + 1;

SPARK 2014 language (ll)

 Main restrictions with respect to Ada

Functions cannot have side-effects
No pointers (no access types)

No aliasing (between references)
No exceptions

No tasking

« Additional constructs specific to SPARK 2014

New aspects: Contract _Cases, Global, Depends
New pragmas: Loop_Invariant, Loop_Variant

New attributes: Loop_Entry, Update

SPARK 2014 example

type Index is range 1 .. 10;
type Elements is range 0 .. 100;
type Elt Array is array (Index) of Elements;

function Max (El, E2 : Elements) return Elements is
(1f E1 < E2 then E2 else E1);

procedure Max Array (A : Elt Array; EMax : out Elements) with
Global => null,
Depends => (Emax => A),
Post => (for all Elt of A => EMax >= Elt);

procedure Max Array (A : Elt Array; EMax : out Elements) is
begin
EMax := Elements'First;
for J in Index loop
if A (J) > EMax then
EMax := A (J);
end if;
pragma Loop Invariant
(EMax >= Emax’Loop Entry and
(for all K in Index’First .. J => (EMax >= A (K))));
end loop;
end Max Array;

