
Slide: 1 Copyright © 2013 AdaCore

José F. Ruiz

Ada Spain 2013

Senior Software Engineer

Programming by Contract

Slide: 2 Copyright © 2013 AdaCore

Key Messages

Slide: 3 Copyright © 2013 AdaCore

Ada Evolution

Ada 83

Ada 95
•  Object

Orientation
•  Better Access

Types
•  Protected

Types
•  Child

Packages

Ada 2005
•  Interfaces
•  Containers
•  Better Limited

Types
•  Ravenscar

Ada 2012
•  Pre / Post /

Invariants
•  Iterators
•  New

expressions
•  Process

Affinities

Slide: 4 Copyright © 2013 AdaCore

•  Ada 83 to 2005 forbids the use of in out for function
•  Since Ada 95, it’s possible to workaround that with the

access mode (but requires the explicit use of an access)
•  Ada 2012 allows ‘in out’ parameters for functions

In out parameters for functions

function Increment (V : in out Integer) return Integer is
begin
 V := V + 1;
 return V;
end F;

Slide: 5 Copyright © 2013 AdaCore

•  Ada 2012 detects “obvious” aliasing problems

Aliasing detection

 function Change (X, Y : in out Integer) return Integer is
 begin
 X := X * 2;
 Y := Y * 4;

 return X + Y;
 end;

 One, Two : Integer := 1;

begin

 Two := Change (One, One);
 -- warning: writable actual for "X" overlaps with actual for "Y“

 Two := Change (One, Two) + Change (One, Two);
 -- warning: result may differ if evaluated after other actual in expression

Slide: 6 Copyright © 2013 AdaCore

•  The Ada 2012 standard normalizes pre conditions, post
conditions

•  New type invariants will ensure properties of an object

•  Subtype predicates

Pre, Post conditions and Invariants

type T is private
 with Invariant => Check (T);

type Even is range 1 .. 10
 with Predicate => Even mod 2 = 0;

procedure P (V : in out Integer)
 with Pre => V >= 10,
 Post => V’Old /= V;

Slide: 7 Copyright © 2013 AdaCore

•  It will be possible to write expressions with a result
depending on a condition

Conditional expressions

procedure P (V : Integer) is
 X : Integer := (if V = 10 then 15 else 0);
 Y : Integer := (case V is when 1 .. 10 => 0, when others => 10);
begin
 null;
end;

Slide: 8 Copyright © 2013 AdaCore

•  Given a container, it will be possible to write a simple loop
iterating over the elements

•  Custom iterators will be possible

Iterators

Ada 2005 Ada 2012

for X in C loop
 -- work on X
 Y := Container.Element (X);
 -- work on Y
end loop;

for Y of C loop
 -- work on Y
end loop;

 X : Container.Iterator := First (C);
 Y : Element_Type;
declare
 while X /= Container.No_Element loop
 -- work on X
 Y := Container.Element (X);
 -- work on Y
 X := Next (X);
 end loop;

Slide: 9 Copyright © 2013 AdaCore

•  Checks that a property is true on all components of a
collection (container, array…)

Quantifier expressions

type A is array (Integer range <>) of Integer;

V : A := (10, 20, 30);
B1 : Boolean := (for all J in V’Range => V (J) >= 10); -- True
B2 : Boolean := (for some J in V’Range => V (J) >= 20); -- True

Slide: 10 Copyright © 2013 AdaCore

•  Memberships operations are now available for all kind of
Boolean expressions

Generalized memberships tests

Ada 2005 Ada 2012

if C in ‘a’ | ‘e’ | ‘i’
 | ‘o’ | ‘u’ | ‘y’ then

case C is
 when ‘a’ | ‘e’ | ‘i’
 | ‘o’ | ‘u’ | ‘y’ =>

if C = ‘a’
 or else C = ‘e’
 or else C = ‘i’
 or else C = ‘o’
 or else C = ‘u’
 or else C = ‘y’
then

Slide: 11 Copyright © 2013 AdaCore

•  Function implementation can be directly given at
specification time if it represents only an “expression”

Expression-functions

function Even (V : Integer) return Boolean
 is (V mod 2 = 0);

Slide: 12 Copyright © 2013 AdaCore

•  Ada 2005 containers are unsuitable for HIE application
–  Rely a lot of the runtime

–  Not bounded

•  Ada 2012 introduces a new form of container, “bounded”
used for
–  HIE product

–  Statically memory managed

–  Static analysis and proof

Containers

Slide: 13 Copyright © 2013 AdaCore

•  Task can be assigned to specific processors
•  Enhances control over program behavior
•  Enables Ravenscar on multi-core

Processor affinities

task body T1 is
 pragma CPU (1);
begin
 […]
end T1;

task body T2 is
 pragma CPU (2);
begin
 […]
end T2;

Slide: 14 Copyright © 2013 AdaCore

•  Improve readability
–  Specification contains formally expressed properties on the code

•  Improve testability
–  Constraints on subprograms & code can lead to dynamic checks

enabled during testing

•  Allow more static analysis
–  The compiler checks the consistency of the properties

–  Static analysis tools (CodePeer) uses these properties as part of its
analysis

•  Allow more formal proof
–  Formal proof technologies can prove formally certain properties of

the code (High-Lite project)

Ada 2012 safety improvements

Slide: 15 Copyright © 2013 AdaCore

1994
T

SPARK 2014

Slide: 16 Copyright © 2013 AdaCore

•  Testing is expensive and inaccurate

•  Proving is more accurate, but proving 100% is even more expensive…

•  … especially the last 20%

•  How about proving what’s easy to prove and test the rest?

SPARK 2014 POW

Slide: 17 Copyright © 2013 AdaCore

•  SPARK 2014 is a subset of Ada
–  Provable subset (Ada without tasking, exceptions and access / aliasing)
–  Can act as a coding standard for e.g. DO-178B

–  Provable

•  Proofs are made against formal contract (pre / post conditions)

•  Sometimes it’s not practical to
–  Write in SPARK 2014

–  Write the contracts
–  Prove the code

•  Test can replace proof

•  Objective : be at least as good as test, at most as expensive as tests

Principles

Slide: 18 Copyright © 2013 AdaCore

Combining Unit Proof and Unit Test

Verification Results

Unit
Test

Unit
Proof

Unit Proof is done by SPARK toolset,
relying on provers (e.g. Alt-Ergo)

Unit test can be done either using
GNATtest or standard testing
technology

Slide: 19 Copyright © 2013 AdaCore

•  Absence of Run-Time errors (exceptions)

•  Each point of call verifies the preconditions of this subprogram

•  Each subprograms verifies the postcondition assuming that the
precondition is true

•  Predicates and type invariants are verified on type usage

•  Addition of constructions dedicated to proof (loop invariants,
object update, …)

Proof with SPARK 2014

Slide: 20 Copyright © 2013 AdaCore

1994
T

Example
Programming by Contract

Slide: 21 Copyright © 2013 AdaCore

Example: a ring buffer

Buf_Size : constant := 100;

type Buf_Array is array (0 .. Buf_Size − 1) of Float;
-- The array which stores the buffer

type Ring_Buffer is record
 Data : Buf_Array := (others => 0.0);
 First : Integer := 0;
 Length : Integer := 0;
end record;
-- The record representing the buffer.
-- First is the first cell containing valid data.
-- Length is the number of stored items.
-- Wrapping around the array borders is possible.

-- The field Length is between 0 and Buf_Size.
-- The field First is always a valid array index, hence
-- between 0 and Buf_Size − 1.

DATA

Slide: 22 Copyright © 2013 AdaCore

Example: a ring buffer (II)

function Is_Empty (R : Ring_Buffer) return Boolean;
-- Check whether the buffer is empty

function Is_Full (R : Ring_Buffer) return Boolean;
-- Check whether the buffer is full

function Head (R : Ring_Buffer) return Float;
-- Return the first element of the buffer

procedure Push (R : in out Ring_Buffer; Element : Float);
-- Insert element in the buffer. The buffer should not be full
-- and its length is increased by one.

procedure Pop (R : in out Ring_Buffer; Element : out Float);
-- Extract the first element of the buffer. The buffer should
-- not be empty and its length is decreased by one.

API

Slide: 23 Copyright © 2013 AdaCore

Enhance ring buffer: better typing

Buf_Size : constant := 100;

type Length_Type is new Integer range 0 .. Buf_Size;
-- The integer type of buffer length

type Index_Type is mod Length_Type’Last;
-- The integer type for valid array indices

type Buf_Array is array (Index_Type) of Float;

type Ring_Buffer is record
 Data : Buf_Array := (others => 0.0);
 First : Index_Type := 0;
 Length : Length_Type := 0;
end record;

Slide: 24 Copyright © 2013 AdaCore

Enhance ring buffer: use Ada 2012 expression functions

function Is_Empty (R : Ring_Buffer) return Boolean is
 (R.Length = 0);
-- Check whether the buffer is empty

function Is_Full (R : Ring_Buffer) return Boolean is
 (R.Length = Buf_Size);
-- Check whether the buffer is full

function Head (R : Ring_Buffer) return Float is
 (R.Data (R.First));
-- Return the first element of the buffer

Slide: 25 Copyright © 2013 AdaCore

Enhance ring buffer: contracts

procedure Push (R : in out Ring_Buffer; Element : Float) with
 Pre => not Is_Full (R),
 Post => R.Length = R.Length’Old + 1;
-- Insert element in the buffer. The buffer should not be full
-- and its length is increased by one.

procedure Pop (R : in out Ring_Buffer; Element : out Float) with
 Pre => not Is_Empty (R),
 Post => R.Length = R.Length’Old - 1 and then
 R.First = R.First’Old + 1 and then
 Head (R’Old) = Element;
-- Extract the first element of the buffer. The buffer should
-- not be empty and its length is decreased by one.

Slide: 26 Copyright © 2013 AdaCore

1994
T

What can we do with
contracts?

Slide: 27 Copyright © 2013 AdaCore

Possibilities

•  Static verification
–  The compiler has limited checks

–  Must run quickly -> imprecise analysis

–  Can detect “obvious” errors

–  Verifier performs longer and better analysis
–  Longer execution -> precise analysis

–  Scalable analysis -> modular, based on contracts

–  Can detect subtle errors

•  Run-time checks
–  Contracts behave like Assertions

•  Formal proofs
–  SPARK 2014

Slide: 28 Copyright © 2013 AdaCore

Static verification: compiler

function Increase (X : Integer) return Integer with
 Post => X < Integer'Last;

$ gcc –c –gnat12 –gnata pck.adb
warning: postcondition refers only to pre-state
warning: function postcondition does not mention result

Slide: 29 Copyright © 2013 AdaCore

Verifier

•  The Verifier checks
–  All possible run-time errors

–  Division by zero, range checks, …

–  All user properties
–  Assertions

–  Contracts

–  Invariants

•  The Verifier works by
–  Generating specific logical formulas

–  Called Verification Conditions (VCs)

–  Using a prover to verify them

•  Strong mathematical origins

Slide: 30 Copyright © 2013 AdaCore

Static verification: verifier (postcondition)

$ gnatprove -v --report=detailed -P default.gpr
analyzing Example_2012.Push, 3 checks
example_2012.adb:9:38: info: range check proved
example_2012.adb:10:28: info: range check proved
example_2012.ads:37:21: info: postcondition proved
analyzing precondition for Example_2012.Push, 0 checks
analyzing Example_2012.Pop, 2 checks
example_2012.adb:20:28: info: range check proved
example_2012.ads:43:21: info: postcondition proved
analyzing precondition for Example_2012.Pop, 0 checks

procedure Push (R : in out Ring_Buffer; Element : Float) with
 Pre => not Is_Full (R),
 Post => R.Length = R.Length’Old + 1;

procedure Pop (R : in out Ring_Buffer; Element : out Float) with
 Pre => not Is_Empty (R),
 Post => R.Length = R.Length’Old - 1 and then
 R.First = R.First’Old + 1 and then
 Head (R’Old) = Element;

Slide: 31 Copyright © 2013 AdaCore

Static verification: verifier (range checks)

procedure Push (R : in out Ring_Buffer; Element : Float) is
begin
 R.Data (R.First + Index_Type (R.Length)) := Element;
 R.Length := R.Length + 1;
end Push;

procedure Pop (R : in out Ring_Buffer; Element : out Float) is
begin
 Element := R.Data (R.First);
 R.Length := R.Length - 1;
 R.First := R.First + 1;
end Pop;

example_2012.adb:9:38: info: range check proved
example_2012.adb:10:28: info: range check proved
example_2012.ads:37:21: info: postcondition proved
analyzing precondition for Example_2012.Push, 0 checks
analyzing Example_2012.Pop, 2 checks
example_2012.adb:20:28: info: range check proved
example_2012.ads:43:21: info: postcondition proved
analyzing precondition for Example_2012.Pop, 0 checks

Slide: 32 Copyright © 2013 AdaCore

What if a VC is not proved?

•  Causes
–  Incorrect code
–  Incorrect assertion
–  Missing assertions about program behavior
–  Prover timeouts
–  Prover not smart enough

•  How to investigate
–  Relatively easy

–  Pre/post conditions, assertions, and invariants are executable
•  You can run and debug them

–  Increase prover timeout
–  Use alternative SMT prover

–  Time consuming
–  Manual review

–  Time consuming and difficult
–  Hand-written proofs

–  … or testing

Slide: 33 Copyright © 2013 AdaCore

1994
T

SPARK 2014

Slide: 34 Copyright © 2013 AdaCore

SPARK 2014 language (I)

•  Completely based on Ada 2012
–  New specification aspects: contracts, invariants
–  New expresions: if expression, case expression, quantified expression (for all, for some)

–  New attributes: ‘Result, ‘Old

-- Old SPARK
procedure Inc (X : in out Integer);
--# pre X < Integer’Last;
--# post X = X~ + 1;

-- New SPARK 2014
procedure Inc (X : in out Integer) with
 Pre => X < Integer’Last,
 Post => X = X’Old + 1;

Slide: 35 Copyright © 2013 AdaCore

SPARK 2014 language (II)

•  Main restrictions with respect to Ada
–  Functions cannot have side-effects
–  No pointers (no access types)

–  No aliasing (between references)
–  No exceptions

–  No tasking

•  Additional constructs specific to SPARK 2014
–  New aspects: Contract_Cases, Global, Depends
–  New pragmas: Loop_Invariant, Loop_Variant

–  New attributes: Loop_Entry, Update

Slide: 36 Copyright © 2013 AdaCore

SPARK 2014 example

type Index is range 1 .. 10;
type Elements is range 0 .. 100;
type Elt_Array is array (Index) of Elements;

function Max (E1, E2 : Elements) return Elements is
 (if E1 < E2 then E2 else E1);

procedure Max_Array (A : Elt_Array; EMax : out Elements) with
 Global => null,
 Depends => (Emax => A),
 Post => (for all Elt of A => EMax >= Elt);

procedure Max_Array (A : Elt_Array; EMax : out Elements) is
begin
 EMax := Elements'First;
 for J in Index loop
 if A (J) > EMax then
 EMax := A (J);
 end if;
 pragma Loop_Invariant
 (EMax >= Emax’Loop_Entry and
 (for all K in Index’First .. J => (EMax >= A (K))));
 end loop;
end Max_Array;

